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a  b  s  t  r  a  c  t

The  Higuchi  model  for  the rate  of  drug  release  from  matrix  devices  where  the drug  loading  exceeds  the
solubility in  the matrix  medium,  whose  50-year  anniversary  is  celebrated  in this  issue,  has  proven  to  be
a  robust  framework  and  an  invaluable  tool  in developing  a  significant  part  of  the modern  controlled  drug
delivery  industry.  This  paper  reviews  the  conceptual  and  mathematical  bases  for  this  model  and  some
consequences  of its inherent  assumptions.  In  addition,  selected  extensions  of  the  model  that  have  proven
eywords:
rug delivery
iguchi
issolution rate
atrix

useful  over  the  years  are  summarized.  These  include  the  effects  of  external  mass  transfer  resistance  and
spatial  variations  of  drug  loading.

© 2010 Elsevier B.V. All rights reserved.
embrane

. Introduction

It is quite common these days to measure the impact of some-
ne’s scientific papers by the number of times they are cited in the
ritings of others. However, the ultimate accolade is when some-

ne’s work or result can be mentioned or used without citation. For
xample, in scientific writings it is considered perfectly acceptable
o write F = ma without citing any writings by Newton or E = mc2

ithout explicitly referencing a paper by Einstein. In polymer sci-
nce, it is common to use the Flory–Huggins or the Mark–Houwink
quations without citing any source. In the field of drug delivery, it
as become common to mention the Higuchi equation or model or
o simply say “Higuchi kinetics” in a similar fashion (Higuchi, 1961,
963).

This famous equation addresses the rate of release of a solute,
ypically a drug, from a matrix, usually a polymer, where the load-
ng of solute, A, exceeds its solubility, Cs, in the matrix, into a
urrounding fluid. The analysis made by Takeru Higuchi while he
as at the University of Wisconsin involved two  key steps. The
rst of these was the greatest breakthrough, in my  opinion. That

s, the physical visualization of dividing the matrix, as illustrated
n Fig. 1, into an inner region where undissolved particles exist,

 > �, and an outer region, x < �, where all the drug is dissolved (no

articles) but there is a gradient of concentration that by Fick’s

aw governs the rate of release of solute to the surrounding fluid.
he model further envisions this boundary to move inward as the

∗ Tel.: +1 512 471 5392; fax: +1 512 471 0542.
E-mail address: drp@che.utexas.edu

378-5173/$ – see front matter ©  2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2010.10.037
undissolved drug is completely converted to dissolved drug and
eventually released from the matrix to the surrounding fluid; in
other words, this becomes a “moving boundary” problem (Crank,
1984). This picture is so obvious now, but I am pretty sure it was
not 50 years ago! To complete the model in explicit form, Higuchi
used a “pseudo steady-state” analysis combined with a global mass
balance to get the now famous result

Mt =
√

DCs(2A  − Cs)t (1)

or

J = dMt

dt
=

√
DCs(A − 1/2Cs)

2t
(2)

where Mt is the accumulative amount of solute released up to time
t from unit area of surface and D is the diffusion coefficient of the
solute in the matrix. This analysis describes a number of other phys-
ical problems in addition to drug release from a “matrix” tablet.

Eqs. (1) and (2) were developed for a simple slab geometry
using rectangular coordinates; however, some attention has been
devoted to cylindrical, spherical, and other shapes (Flynn et al.,
1976; Liu and Hsu, 2006; Kosmidis et al., 2003).

At this point it is necessary to explain my interest in this model
and my  connection to Tak Higuchi (and to his brother Bill). At this
writing, I have been involved in polymer science and technology for
50 years with a continuous interest in many aspects of diffusion in
polymers starting with Ph.D. research in the Department of Chem-

ical Engineering at the University of Wisconsin during 1961–1965.
I first became aware of papers by the Higuchi brothers (Higuchi,
1958; Finger et al., 1960; Higuchi and Higuchi, 1960) on topics not
directly related to Eqs. (1) and (2) while guiding the research of my

dx.doi.org/10.1016/j.ijpharm.2010.10.037
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:drp@che.utexas.edu
dx.doi.org/10.1016/j.ijpharm.2010.10.037
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Fig. 1. Schematic illustration of the Higuchi model.

rst Ph.D. student at the University of Texas at Austin (Paul and
emp, 1973; Kemp and Paul, 1974). Eventually I became interested

n drug delivery problems as a result of my  interest in diffusion
f solute molecules in polymers; however, drug delivery never has
een more than a small part of my  university research. On the other
and, I have been very involved in the field as a consultant to indus-
ry for nearly 40 years. It was in the latter capacity that I became
ware of “Higuchi kinetics” and very much interested in this prob-
em. A longstanding regret is that I was unaware of Tak Higuchi

hile I was at the University of Wisconsin although I was there
hen the famous Eqs. (1) and (2) were first published. Later, I came

o understand that many of my  classmates in chemistry classes
ere his graduate students. As time went on I came to know and

espect many former students from the Higuchi group. In time, I
new Tak rather well, mainly through consulting activities.

It is a pleasure to add to this issue and to reflect on his many con-
ributions including, but not only, Eqs. (1) and (2).  The theme here
s to give some examples that illustrate how the physical model
onceived by Tak Higuchi formed the basis for mathematical exten-
ions for describing many aspects of drug delivery and to point out
ome of its assumptions and limitations. Most of these examples
ome from my  own experiences over the years in dealing with drug
elivery problems.

. Accuracy of the pseudosteady-state approximation

In developing Eq. (1),  Higuchi employed the approximation
hat the diffusion in the solute depleted zone, 0 < x < �, could be
escribed by a steady state version of Fick’s first law, i.e.,

 = dMt

dt
= DCs

�
(3)

hich includes the additional assumption that C = 0 at x = 0. For the
emaining boundary condition Higuchi used the following global
ass balance:

dMt

dt
=

(
A − 1

2
Cs

)
d�

dt
(4)

o complete the pseudosteady-state analysis. Eqs. (3) and (4) can
e combined and integrated to get Eqs. (1) or (2).

In the early 1970s I wondered about the accuracy of the assump-
ions implicit in these approximations. The diffusion problem in the
epleted zone is more rigorously defined in terms of Fick’s second

aw

∂C

∂t
= D

∂2C

∂x2
(5)

ith the boundary conditions at x = �
 = Cs (6)

A − Cs)
d�

dt
= D

∂C

∂x
(7)
armaceutics 418 (2011) 13– 17

assuming again that C = 0 at x = 0; more will be said about this later.
With a great deal more effort this problem can also be solved, but
the solution is rather complex and will not be reproduced here (Paul
and McSpadden, 1976).

As it turns out, for A � Cs, Eqs. (1) and (2) involve negligible error
relative to this exact solution. There is a small error in Eqs. (1) and
(2) when A is not much higher than Cs and amounts to an under-
prediction of only 11.3% when A → Cs. Thus, for most purposes
one can use Eqs. (1) or (2) without concern for these approxima-
tions. However, the more rigorous analysis is absolutely necessary
for some situations (Paul and McSpadden, 1976). Tak Higuchi was
always very gracious about my  effort to “improve” on his analysis
and embraced the possibilities of more rigorous analyses of drug
diffusion problems.

3. Effects of mass transfer resistance in the surrounding
fluid

As noted earlier, an implicit assumption in Eq. (1) is that there
is negligible resistance in the surrounding fluid to mass transfer
of solute away from the matrix surface. In many situations, this
cannot be ignored in spite of attempts to eliminate such effects by
stirring or motion of the surrounding fluid. This is especially true
for a delivery platform in the intestinal tract. A finite external mass
transfer resistance appears mathematically as a finite concentra-
tion Co at x = 0 inside the matrix. Eq. (1) can be extended to include
this effect as follows (Paul and McSpadden, 1976).

Eq. (2) must be replaced by

dMt

dt
= D

Cs − Co

�
(8)

and the following surface boundary condition has to be introduced:

dMt

dt
= ˛Co (9)

where  ̨ is a mass transfer coefficient that characterizes the resis-
tance in the external phase. Eqs. (8) and (9) can be combined to
get

Co = Cs

(1 + ˛�/D)
(10)

Combining Eqs. (4), (8) and (10) followed by an integration gives
the following simple modified form of Eq. (1) in the limit of long
times:

Mt =
√

2DCs

(
A − 1

2
Cs

)
[
√

t −
√

to] (11)

where

√
to = 1

˛

(
A

Cs

)√
D

2(A/Cs − 1/2)
(12)

In other words, a plot of Mt vs.
√

t remains linear at long enough
times but there is an intercept on the

√
t axis of

√
to. This modified

form of the Higuchi model can be very useful in data analysis as
demonstrated by Paul and McSpadden (1976).

4. Dissolution-controlled release kinetics

An implicit assumption in the physical model in Fig. 1 and in
the derivation of Eqs. (1) and (2) is that the rate at which the drug
dissolves into the matrix from the particles must be much more

rapid than the diffusional processes. This condition may not be
satisfied when diffusion in the matrix is fast or when the drug dis-
solves very slowly (Chandrasekaran, 1982). Slow dissolution might
be expected for drugs having low solubility in the matrix.
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loading needs to be in the center. Other geometries and greater
numbers of layers could be envisioned, but Fig. 3 is adequate for
illustrating the concept (Paul, 1985). Laminated constructions were
well known this field.
D.R. Paul / International Journa

In the limit of very slow drug dissolution, the system cannot be
ivided into zones like those shown in Fig. 1, and as a result the
odel embodied in Eqs. (1) and (2) breaks down. In the extreme

ase where there are undissolved drug particles throughout the
atrix, the release process may  be described by a form of Fick’s sec-

nd law with a term to represent the local rate of drug dissolution
ike the following:

∂C

∂t
= D

∂2C

∂x2
+ K(Cs − C) (13)

here K is a solute dissolution rate constant (Chandrasekaran
nd Paul, 1982; Kurnik and Potts, 1997; Gurny et al., 1982). This
quation has been solved for the semi-infinite geometry with the
ollowing boundary and initial conditions (Chandrasekaran and
aul, 1982)

 = 0 at x = 0 for all t (14)

 = Cs at t = 0 for all x (15)

The solution, which is not reproduced here, shows that the
mount of drug released is proportional to

√
t for early times and to

 for longer times (Chandrasekaran and Paul, 1982). The dissolution
ate constant depends on the size of the undissolved drug particles
Chandrasekaran and Paul, 1982).

There are many intermediate cases between the limits of fast
issolution or diffusion control (Eqs. (1) and (2))  and fast diffusion
r dissolution (control) that can be addressed by models like the
ne described above.

. Membrane–matrix composites

The holy grail of controlled release technology has long been to
chieve a constant, or zero-order, release rate (Michaels, 1974; Paul,
976; Stannett et al., 1979; Rhine et al., 1980a; Chandrasekaran
t al., 1978). An elegant approach to this goal is to encapsulate

 drug reservoir with a rate limiting membrane (Chandrasekaran
t al., 1978). The reservoir contains a drug suspension in a fluid or
el phase where the drug loading far exceeds its solubility in this
edium. Thus, the dissolved drug concentration remains constant

uring most of the delivery of drug from the system, i.e., the ther-
odynamic activity of the drug remains at unity even though the

oading continues to decline as delivery proceeds. As a result, the
ate of drug delivery or flux, J, remains at its maximum value Jm
hroughout except in the very initial (burst effect) and end (deple-
ion) stages of delivery. Fig. 2(a) schematically illustrates a reservoir
ystem.

This construction assumes drug migration in the reservoir is
ery fast such that there is no depletion layer adjacent to the mem-
rane. If drug diffusion in the reservoir is not very fast, the drug
eservoir may  behave according to the Higuchi model in Fig. 1,
ee Fig. 2(b), allowing a prediction of the decline in flux J from the
aximum value Jm using the following result:

 = Jm
Co

Cs
= D

Cs − Co

�
(16)

nd a mass balance analogous to Eq. (4) (Paul, 1984). To a good
pproximation, this result can be simplified to

r J ∼=
[

1

J2
m

+ 2t

DCs(A − 1/2Cs)

]−1/2

(17)

In the limit where transport in the reservoir is very fast, this
educes to J = Jm; while when Jm = ∞,  this reduces to Eq. (2) above.

q. (17) predicts the situations in between these limits.

The construction in Fig. 2 is also applicable to situations where
here is a non-soluble overcoat on a matrix tablet. This will tend to

itigate the inverse
√

t dependence of release rate characteristic
Fig. 2. Illustration of a drug reservoir with a rate limiting membrane attached where
drug transport in reservoir or matrix is very fast (a) and where the drug transport is
not fast (b).

of true matrix systems. Eq. (17) is useful for analyzing or designing
such systems.

6. Laminated matrix systems

While typically matrix systems are more economical to man-
ufacture than reservoir-type systems, a clear disadvantage is the
declining flux with release time as predicted by Eq. (2).  There has
been much thought given to how to retain the economical advan-
tage of matrix systems while obtaining a more constant release
rate. One approach to this problem is to spatially vary the drug
loading in a matrix system (Paul, 1985). One of the simplest ways
to implement this concept is to construct a laminate whose layers
have different drug loading as suggested in Fig. 3; clearly, the higher
Fig. 3. Illustration of a two-layer laminate with different drug loadings in each layer
at  t = 0 before and during release.
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As taught by the Higuchi model, the release rate declines as
he front shown in Fig. 1 moves inward, i.e., as � increases the
iffusion distance increases and the rate slows. However, Eq.
2) shows that increasing drug loading A increases the delivery
ate. Thus, the concept is to give a boost to the rate as delivery
rogresses.

Analysis of such a design is tedious but the methodology has
een worked out (Paul, 1985). Reproducing such results is beyond
he scope of this contribution, but suffice it to say that the release
rofile can be significantly flattened by this approach as sample cal-
ulations have shown (Paul, 1985). Techniques for manufacturing
uch systems are not overly complicated. As a side note, publi-
ation of this concept was delayed by a few years at the request
f a consulting client who was concerned this might damage the
arket position of their established business with reservoir sys-

ems. However, eventually it was decided that publication might
e a better strategy since it was inevitable that others would
ome to the same conclusion eventually. This concept has sub-
equently been extended in more sophisticated ways by others
Lee, 1984a,b; Pywell and Collett, 1988; Lu et al., 1998; Hassan
t al., 2000; Charalambopoulou et al., 2001; Watkins et al., 2007;
handrasekaran and Hillman, 1980).

There have been other interesting approaches to achieving more
onstant release rate profiles from matrix systems. One of these
s an “inwardly releasing hemisphere” (Rhine et al., 1980b). The
oncept here is that the tendency for the flux to decline with time
wing to the increase in diffusion path length can be compensated
n part by an increasing area of the front at �. Another concept is
o use a glassy polymer as the matrix where, owing to complex
elaxation processes, the swelling front caused by immersion in
ater can move into the polymer linearly in time rather than as

he square root, i.e., so-called Case II diffusion (Hopfenberg and
su, 1978; Ritger and Peppas, 1987; Grassi and Grassi, 2005). The
rug is essentially immobile in the glassy core but diffuses rapidly

n the swollen region behind the front.

. Highly loaded matrix systems

The model envisioned in Fig. 1 does not explicitly deal with what
appens around a particle as drug molecules dissolve in the matrix

n the region just ahead of the front at x = �. Naturally the parti-
le must become smaller as these molecules leave. Does the drug
article lose contact with the matrix as this occurs? Most likely
smotic effects cause water to be imbibed into the space around
he shrinking drug particle forming a saturated solution. Thus, the

odel does not need to address such details in order to arrive at
qs. (1) and (2).  However, in the depleted zone, i.e., x < �, there
ill be holes left, in most cases, where drug particles were; these

re most likely filled with a drug solution in water at a concen-
ration (less than saturation) at equilibrium with drug dissolved
n the surrounding matrix. The solution filled holes may  alter the
iffusion process in the zone 0 < x < �, but this is apparently not a
ery important effect at low drug loadings. Nevertheless, attempts
ave been made to deal with matrix “porosity” effects (Flynn et al.,
974).

However, at very high drug loadings, the issues can become
uch more significant. At high enough loadings, the particles may

ercolate to form a continuous network resembling a sponge. Such
ercolated structures lead to pores that provide a new pathway
or drugs to permeate from the system. Indeed, high molecular
eight proteins, which have effectively no possibility of perme-
ting through a solid matrix polymer, can be released from matrix
ystems by such a mechanism (Langer and Folkman, 1976; Langer
t al., 1980a,b; Rhine et al., 1980b; Hsieh et al., 1983; Balazs et al.,
985).
armaceutics 418 (2011) 13– 17

8. Summary and conclusion

The Higuchi model has been an invaluable framework over its
50-year history for developing large parts of modern drug delivery
technology. It captures the essence of what governs drug release
from a permeable matrix when the drug loading is well in excess of
its solubility limit and allows prediction of release rates with good
accuracy in most cases. It has endured because of its simplicity.
Naturally, it embodies a number of assumptions and approxima-
tions, some of which are not so obvious. This paper deals with some
of these issues and shows how, in some cases, the model can be
extended to incorporate additional complexity when needed.
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